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j&STACT

'. Discrete event simulations are computer models of complex

systems. The accuracy of the model in reflecting the behavior

of the real system is determined by, among other things, the

values of parameters for distributions used in the model. The

modeller could allocate experimental resources more effectively

without loss of accuracy in the model if he or she could

identify those parameters to which the response of interest

has the greatest sensitivity.

One method of doing this is to try to model the response

as a polynomial function of the model parameters. We are then

interested in those terms in the polynomial which have non-

zero coefficients.'-,

Schruben and Cogliano developed a method whereby such

polynomial models can be identified in fewer computer runs

than previous methods allowed. Their concept was to do

analysis in the frequency domain rather than the time domain.

The virtual independence of frequency estimators in a spectrum

means that many parameters can be tested independently within

a single experiment using spectral methods.

.,)This report attempts to extend the Schruben/Cogliano

methodology to cover a more general class of models which

includes discrete-valued parameters, such as policy decisions

or capacities of queues. We evaluated the use of discrete-I
valued functions as a basis for spectral analysis. Several

function sets were considered as possibilities, and Walsh

tV L'~w 2 2 2 I>§-Lk'A-z . 7



functions were selected as the best choice. __

Our preliminary results indicate that Walsh analysis may

present a promising method for identifying significant

*- parameters. However, the method exhibits undesirable behavior

when time lags are present in the model.
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Section I ntroduction

- The identification of parameters or factors which affect

performance is an important area of operations research and

statistics. Until recently it has been too expensive for many

computer simulation studies, which Hillier and Lieberman state

is one of the major shortcomings of simulation [7 ]. The

traditional approach to this problem is to make separate

computer runs for each of many different factor values. The

basic experimental unit is the computer run. Although the

number of runs required may be reduced using screening

designs [10 , it increases geometrically with the number of

factors. This approach becomes prohibitively expensive in

terms of both user and computer time for all but the simplest

of models.

Schruben and Cogliano[12 ] (S/C) addressed this problem

utilizing an entirely different approach. Normally one views

a parameter as a fixed, possibly unknown, attribute of the

system. However, in a computer simulation the experimenter

has complete control of the model and can alter parameter

values during the run. Hence the terms parameter and factor

can be used interchangeably in simulation. Schruben and

Cogliano proposed varying the parameters sinusoidally during a

run. Each parameter is assigned a unique frequency, and

spectral estimators are used to analyze the system output at

the different frequencies. After performing a suitable

i statistical test, if the power spectrum is not significantly
test powr spctru

...................................



different from zero at a given frequency it is concluded that

the system is insensitive to the parameter which was assigned

that frequency. By analyzing the spectrum instead of just the

assigned frequencies, one can detect non-linear response

through a relatively simple set of relations specified in the

S/C paper. Most of their paper addresses the technical

aspects of implementing such a procedure.

The advantage of the S/C approach is that analysis is

moved to the frequency domain. The output time series is

represented using trigonometric functions as a linear

algebraic basis. The experimental unit becomes a frequency

band, and a single run of the simulation contains many almost

independent frequency bands. The number of runs required is

greatly reduced.

One limitation of the S/C procedure is that it can only

be used to evaluate continuous parameters. This problem can

be removed by choosing a different set of functions as a

basis. Three alternative discrete-valued function sets are

Rademacher, Walsh, and Haar functions, which are named after

their inventors. It is the goal of this report to extend the

S/C procedure by considering the use of these alternative

bases for representing the time series.

*Although this report concentrates on the application of

Walsh functions to computer simulations, the methodology

outlined here is equally applicable for any type of 2
n

factorial experimental design situation.

i ~ ~ . ~ '*,2£* ~ ~ *- . ****''"-* 4'~-** * -
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The following section gives a summary of pertinent

information available in the literature about discrete

functions. The intention is to provide the reader with a

sufficient background to understand the material in subsequent

sections. The method proposed in section 2.6 for detecting

system gain apparently has not appeared in previous

literature. Section 3 contains new material about the

statistical properties of the Walsh spectrum estimator, and

tells how to design an experiment to identify significant

parameters in a model. Section 4 gives an in depth

description and an example of how to use the proposed

methodology. In section 5 we propose a number of extensions

to this work.

.I
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2.1 General background

Our notation for trigonometric functions will be

consistent with that used in the recent Ph.D. report by V. J.

Cogliano [5 ]. The symbol u will denote cycles/time.

We will use the following definition of orthogonality

(Beauchamp[
2 3).

Defn - The series (S n(t)) and (S (t)) are orthogonal on the

interval [0,T) if

-. (t) S(t ) dtn = m n,m E Z+

0't nt= 1 0  n m m E

and are orthonormal if k 1 1. (Z+ is the set of nonnegative

integers.)

Any time series y(t) can be approximated over a finite

interval [0,T] by a weighted sum of terms in an orthogonal

series:
.4

~N-i
. -, y(t) -- S Mnn t

"""n=0 n n

Sn (t) is term n of the orthogonal series
cn is a weight.

The most common measure of precision in such an

approximation is the mean squared error, abbreviated KSE.

T N-1 2
MSE 0 [y(t) - X Mnn )dt

.'. MSE can be minimized by setting

-J
~4



Cn -  ylt) Sn(t) dt.

It can be seen that if o12nu t is substituted for Sn(t) then

this is the familiar formula for calculating Fourier

coefficients.

A basis series should have the property of

copleteness[6 ]" One definition of completeness is that there

should not exist any function which is orthogonal to every

element of the basis. This implies

lim ?ISE Ci- 0o
for all y(t) such that y(t) contains at most a countable

number of discontinuities.

The following sections present a brief summary of the

properties of three sets of discrete-valued functions which

might be considered as algebraic bases for y(t). Rademacher,

Walsh, and Haar functions are discussed extensively in all the

literature for discrete spectral methods. It turns out that

only Walsh functions have all the properties needed for the

type of analysis of interest to us.

2.2 Rademacher functions

For the purpose of evaluating a simulation which contains

discrete-valued parameters we want to utilize discrete-valued

functions as our input series. One such series is the set of

Rademacher functions, which are illustrated in figure 1. These

are block pulses which alternate regularly between 1 and -1.

Each function R(k,t) is a function of the continuous index

O ° - o . . . - , . . . . - , - , °. -. ° . . . t . v
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variable t t [O,T). By convention T is assumed to be I unless

otherwise stated, but any value can be used with appropriate

scaling. The first Rademacher function, R(O,t) (0 S t ! T),
is just a line with value 1. Every subsequent function is

constructed by changing the sign on half of each interval in

the previous function, so that the function changes sign in a

regular manner.

R(0,t) +1-

l-

R(l,t) +i
-1R(2,t) +1

-1

R(3,t) +1

- -I

0 T

Figure 1. Example of Rademacher functions

These functions are easy to generate and are orthogonal,

but do not form a complete basis. They therefore cannot be

used to represent a general y(t).

The orthogonality can be shown by considering any two

distinct Rademacher functions R(n,t) and R(m,t), where n and m

are sequence numbers of the Rademacher functions. By the

* - construction of the series, the number of intervals for each

function is a power of two. Each interval of constant value

is of equal length for a given function. Let m be greater[ than n. Then each interval of fixed value for R(n,t) will

I ..- , -.- -. ... : . : . . . - .-. ,- . ...' ..- . ' -" " -. ." .. . .- .- " , .: - . .. . .. . -. - . .. " .- .- - .. . .... - ...

.I" l -nd -- - -- --- - --- - - - --- -- -- " i ,a 
- - - ' W L W L ~d b d

b J , , '



correspond to an even number of equal length intervals with

alternating signs for R(m,t), so the integral of the product

of the two functions on each interval will be zero.

The incompleteness of a Rademacher basis can be seen by

noticing that there is always an odd number of sign changes.

Using Rademacher functions corresponds to restricting Fourier

analysis solely to the use of unshifted sine functions. In

fact, one way of defining Rademacher functions is

R(n,t) - sgn[ sin( 2nnut)

where n is the sequence number of the Rademacher function

sgn[x) +1 x 0sgn[x] -1 -i x < 0.

n
Any cosine function of the form cos(2 ut) is orthogonal to the

basis. Attempting to complete the basis by supplementing it

with terms sgn[ sin( n2not ) ), where n is not a power of 2,

and sgn[ cos( m2nut ) ] where m is any positive integer,

destroys the orthogonal property.

Since Rademacher functions do not have the requisite

properties of completeness and orthogonality, they cannot be

used as a basis for spectral analysis.

: 2.3 Walsh functions

Walsh functions are a set of discrete-valued functions

which assume only the values {-l,+l). They are orthogonal and

complete, having both even and odd symmetry. They can be

constructed recursively, as products of Rademacher functions,

or by constructing Hadamard matrices and sorting. Details of

- . . . .

. .
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construction will be presented later.

Each function is defined by convention on a fixed

interval t c 10,T), and is written WAL(n,t). As with the

Rademacher functions T is usually assumed to be I but can be

any value if the function is scaled appropriately. The value

n is an index which corresponds uniquely to the average number

of zero crossings on the interval, which is called the

sequency of the Walsh function in an analogy to frequency in

trigonometric functions. Walsh functions are paired by even

and odd symmetry and referred to as CAL and SAL functions,

respectively. These are defined as follows:

CAL(kt) - WAL(2k,t) 1 -
SAL(k,t) - WAL(2k-lt) '

where k is the sequency. Figure 2 illustrates four Walsh

functions. The fifth and sixth Walsh functions are shoum to

illustrate that Walsh functions are not periodic in their

variations.

WAL (0,t) +1
-1

+1
WAL(0,t) -l

WAL(5,t) +1

WAL(6,t) ....- 1

0 T

-" Figure 2. Example of Walsh functions

VI.

..
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Walsh and Fourier spectra have a one to one

correspondence. This can be seen from the following sets of

relations, which are used to represent a time series y(t) In

terms of a Fourier and a Walsh basis, respectively:

(Fourier) y(t) - a0 + I aM cos 2nmt + m b sin 2nmt

(Walsh) y(t) - A 0 + I AnCAL(n,t) + I BnSAL(n,t)
n=i n-1l

where ai , bi , Ai , and Bj are the Fourier and Walsh

coefficients, respectively, denoted as c' s in section 2.1.n

Fror this set of equalities it is shown by Maqusi(3l that

A0  ao
andice 1

A n I=a m  os 2nmt CAL(n,t) dt
i: n "M=l b  "0 nntSLntd

mC- 1•

m sin 2nmt SAL(nt) dt

or
CD I

Clearly Walsh and Fourier spectra can be converted back

and forth. We have found the linear change of basis

transform, regardless of the fact that both bases are

infinite. From linear algebra we know that for any complete

series we consider we will be able to find a transformation to

the familiar Fourier spectrum. By considering alternative

bases we have neither gained nor lost information relative to

a Fourier based spectral analysis. However, there are gains

I n

n=-

Clerl Wals and.. Fore spcr ca becnetdbc

, ; - . - ad- or t. We hav foun - d the li ea ch ng of basis ... , -- . . .' . . .



to be had by using the Walsh representation.

The first advantage for Walsh analysis lies in the number

of terms needed to approximate a discrete or discontinuous

time series from the simulation output. Walsh functions are

more efficient than trigonometric functions for this purpose,

since it generally requires a large number of trigonometric

terms to adequately approximate a discontinuity. For the

purposes of altering the value of a discrete input parameter

of the model, trigonometric functions are inappropriate.

The second advantage is computational. According to

Beauchamp it takes n log2n complex multiplications and

additions to evaluate a fast Fourier transform. Since the

Walsh function can only have the values +1 or -1, evaluation

requires only n log2n additions if the analogous fast

transformation is used. Although the degree of improvement in

efficiency is machine dependent, addition is much faster than

multiplication on digital computers using current technology.

2.4 Haar functions

Haar functions are discrete-valued functions which are

defined as

HAR(0,t) = 1 0 g t g 1

HAR(lt) = 1 0 < t < 1/2
1/ 2 t <1

... o/ 2P  n/2P < t < (n + 1/2)/2 P

HAR(2P+ n,t) - -/2 P  (n + 1/2)/2P g t < (n + 1)/2 P

0 elsewhere.
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This definition allows for a sequential unique numbering

system. The first seven Haar functions are illustrated inIi figure three. Notice that there is no unique sequency
correspondence such as exists with the Walsh functions.

HA2R(0, t) +1

HAR (2 ,t)

-V2

HAR (3,t) ~V2
0

-V2

VviHAR(4,t) 2

-2

HAR (5 ,t) 2
0

-2
HAR (6, t)2

-0
-2

HAR (7 ,t)2
0
-2

0 T

Figure 3. Example of Haar functions

A different indexing scheme groups Haar functions by

degree i, the number of zero crossings in width 2-~ The

definition then becomes

.,. -p



HAR(0,1,t) *1 0 t S 1

r VI2a (j - 1)/2 t -1/2)/2

HAR(i,J,t) - 2p ( - 2/2)/21 ! t < J/2
["0 elsewhere

S- 0,1,2,... j - , ,i

Only one term of each degree can be utilized if Haar

functions are used for identification. Otherwise it would be

impossible to distinguish whether an observed outcome was due

to a specific parameter or due to a lag effect from a

different parameter. This property could actually be

advantageous for the purpose of identifying lagged models.

Furthermore, there is a fast Haar transform which requires

only 2(N - 1) additions.

dThese gains are offset by two disadvantages. The first

is that Haar functions consist of three states and so cannot

be used as input for binary parameters. The second and major

disadvantage is that there is not a convenient product

relationship for Haar functions such as exists for Walsh and

trigonometric functions. The product of two Haar functions is

either zero if there is no overlap of the non-zero intervals,

or + A. HAR(k,t), where A. is the amplitude of the Haar
1 1

function with the larger non-zero interval, and HAR(k,t) is

the function with the smaller non-zero interval. This makes

the use of Haar spectra to identify interaction terms or

higher order polynomial terms infeasible.

"* The remainder of this report will concentrate on Walsh

functions since they appear to have the most desirable

properties.

I
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It should be noted that both Walsh and Haar analyses are

computationally stable procedures, since they involve only

addition operations. This is not true of Fourier analysis.

Addition is order preserving for finite precision numbers,

while multiplication is not.

2.5 Characteristics of Walsh Functions

At this point we must make the transition from continuous

Walsh functions into the discrete domain. This is done by

scaling the time axis relative to the highest order Walsh

function of interest, and sampling the value of the continuous

function over unit intervals. We will end up with a vector of

N numbers which correspond to sampling WAL(k,t) at N equal

intervals, i.e. at spacings of T/N. Thus WAL(ki) - WAL(k,t)

where i is the integer portion of [(Nt/T)+l]. WAL(k,.) will

be used to denote the vector consisting of WAL(k,i) for

i = 1,... ,N.

The value of N must be chosen so that each Walsh function

has a unique vector associated with it. If k is the largest

sequence number we wish to observe then we set N = 2 Flog k,

where the log is base 2 and rxl is the smallest integer

* greater than x. As an example, if we were interested in Walsh

functions up to order 5, we could represent them as vectors of

length 8 whose elements assumed the values +1.

- .~~WL(O,.) - 1 , , , ,

. ~~~~~WAL(5,.) - ,i-,i-,i ,I
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Arithmetic operations on Walsh functions make extensive

use of the * operator, which is called a dyadic sum. The

dyadic sum is a bitwise XOR operation, where p XOR q is

defined by the following table.

0 0 1

1 1 0

examples of S operator:

7 111 9 1001
0 5 <-> S 101 S 3 <-> S 0011

2 010 10 1010

We present a short list of interesting properties of

Walsh functions. The list is not comprehensive. The

following definitions will be used.

N is the number of observations

x is the ith parameter in the model

Y. is the jth term in the output time series

Y(k) is the kth term in the output series after transformation

y c(k) and Ys (k) are the kth CAL and SAL terms, respectively

P(k) is the spectrum estimate of power at sequency k

It is worthwhile to note here that the Y's above are the

estimates for the A's and B's used in the series

- .representation in section 2.3. We are using the notation

y J-# Y to emphasize that the original observations and the

.estimated coefficients are a transform pair, either of which

could be used to fully reconstruct the other.

* 1,, , ,' % ' , ., , , ,,, , ' , -,- - ,- - ,,•.'. , -- ' ", , ' . •" . '. ' '- , - , ', , . . ' . .- , '



symmetry WAL(kI) - WAL(i,k)

multiplication WAL(k,i)WAL(J,i) - WAL(J,i)WAL(k,i)
properties

WAL(k,I)WAL(J,i) - WAL(k * J,J)

CAL(k,i)CAL(J,i) - CAL(k S J,i)

SAL(k,i)CAL(J,i) - SAL(j S [k-l),i)

SAL(ki)SAL(J,i) - CAL([k-1) S [j-1),i)

Walsh N1i-~k yi (k,i)
transformation - i

spectrum 2
estimator P(O) Yc(0)

P(k) Y (k) + Y2(k) k=,2,...,(N/2)-i

P(N/2) - Y2(N/2)

There is a shift theorem for trigonometric functions

which states that shifting a trig function does not change the

observed frequency. There is no comparable theorem for Walsh

functions. Their shift behavior is discussed later.

Two immediate results for the • operator are that

k • k = 0 for all k, and k 0 = k for all k. Applying these

to the Walsh multiplication properties shows that if

x = WAL(k,i), then

U

'U ,*.

-- -.
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X2 - x * x - WAL(k 0 k,I) - WAL(0,i)

x 3 M x * x2 - WAL(k * 0,1) - WAL(k,i)
"x4 M x X3

-x * - WAL(k • k,i) - WAL(O,i)

By induction all even powers of x will have an indicator

sequency of 0 and all odd powers will have sequency k/2. This

means that we will be unable to estimate any but first order

and interaction terms using a single Walsh function. If the

problem is viewed geometrically this is reasonable, since

using a Walsh function corresponds to sampling the data at

only two points. With two points it is not possible to

determine more than a first order model.

If we are only interested in significant parameter

detection, this presents no difficulty. However, if we hope

to use the data later to estimate a model there may be

trouble. The situation is acceptable in the case of binary

,I parameters, but there is a pre0-'em for continuous or p-state

parameters where p > 2. We would prefer to have a single

Sprocedure which works for both continuous and discrete

parameters. One way to overcome the problem is to use sums of

Walsh functions as the input. A sum of two Walsh functions

with amplitudes A1 and A2 will yield (+A1 ±A2), or up to four

distinct sampling points. This should be sufficient to

construct most non-linear models in practice.
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x(i) - WAL(Ji) + WAL(k,i)

y(i) - I + a 2x 2 (i)
22

a I + a2 [WAL(J,i) + WAL(k,i)]2

-a I + a2 [WAL(j 0 J,i) 4 2WAL(j * k,i)

+ WAL(k S k,i))

- 1 + 2a 2 )WAL(O,i) + 2a 2WAL(j * ki)

We would observe an increase in the steady state term,

sequency 0, and an interaction term at sequency (j S k)/2 for

the square term in a model of this form. A linear term in x

would just have sequencies J/2 and k/2 appear in the spectrum.

This form of input may offer a viable approach to

detecting system gain. Gain is the system's tendency to

.* amplify or attenuate the response at different seuencies. If

.- a parameter has a linear term, in the absence of system gain

-. the amplitudes of WAL(J,i) and WAL(k,i) should be the same. By

using a combination of high sequencies and low sequencies, and

comparing the spectra of the two sequencies for a given run,

any differences in power should be due to system gain or

stochastic error. We can statistically test the spectrum for

gain by performing an F-test as described later.

According to the literature Walsh functions are

theoretically better than trigonometric functions for parameter

detection in non-linear models. This can be explained by

figure 4. Since input is held at a single value for each time

interval, the system output has the characteristic of

maintaining a single value over the same interval. The
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amplitude of the output is changed, but the number of steps

remains the same and will be detected by Walsh analysis.

OL+ PLLt

Figure 4. A nonlinear response surface

A problem in the use of Walsh analysis is that it is not

invariant under phase shifts. According to Beauchamp the CAL

and SAL functions of a given sequency vary inversely to each

other in such a manner that the spectrum estimator is

"relatively insensitive" to changes in phase. However, the

practitioner should be cautious if the simulation model

involves time lags. Our experiments indicate that the power

spectrum is phase shift invariant if the sequency is N/2 or

N/4, where N is the number of terms in the series. For other

sequencies the spectrum will have a spike at the driving

seqtiency, but there will be spikes of varying heights at other

sequencies as well. The total power in the spectrum remains

constant, and empirical evidence indicates that the bulk of

the power is usually displayed at the original sequency.

Spectra are usually plotted on a log scale, and it is

"a',

, . .,. -.- . . ., . ., ', ,.. ,. . .- . •** . .' .. . , ,. . . . . •- ,,. . . : .' , , .,.,. . , .. -, :,.' , ., -, .



I. .19

*difficult to discern the primary from secondary spikes.

Furthermore, there are cases where the power is uniformly

distributed across all spikes, making identification

impossible. We have been unable to find an analytical method

of predicting the location of the extra spikes, other than by

actually producing spectra of the sequency at a specified

lag. See appendix 2 for details.

2.6 Generating Walsh functions

The vector notation introduced in the previous section

allows us to use matrices to represent Walsh functions, which

simplifies notation substantially. Throughout the remainder

of this paper we will use WN to denote an NxN matrix comprised

of the first N Walsh functions.

example

= [1 -1i W4 =  1 -1 - 1

Walsh functions can be generated recursively by the use

of Hadamard matrices. One definition of a Hadamard matrix is

_.. - ,..
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2 H2n -H

rHH

H. .: 2 (n41) LH2 -12 n -Hr 11- (n~ 0 ).

2-:'- 1 1 ] 44  1 -1 -1 -1

Notice that H contains the first N Walsh functions as its
N

rows and columns, but not in sequency order. After sorting we

have W, which retains the symmetry property of H. However,

while this is an interesting mathematical viewpoint it does

not provide a convenient and efficient method for obtaining

Walsh functions.

The discrete Walsh transformation can be viewed as a

matrix transformation using W which performs a change of basis

on a vector y of length N = 2.

Y W y

By the orthonormal property

wwT =N I
where
T is the transpose operator
N is as defined above
I is the NxN identity matrix

w = WT since W is symmetric. W is invertible because it is

composed of orthogonal vectors, and so must be of full rank.

We can compute W 1 as follows:

r A . - M-L --
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W -W.

This means that the Walsh transformation is its own

inverse after scaling by N. This provides us with perhaps the

sirplest method of generating Walsh functions. Just as with

the Fourier transformation matrix, W has redundancies and can

be reduced to a sparser matrix. Use of this sparse matrix

Eresults in a considerable savings in computational time and

complexity. This is called the Fast Walsh Transform (FWT).

By performing a FWT on a vector which has the value one in the

location corresponding to the desired sequence number and

which is zero elsewhere, we obtain the indicated Walsh

function as output.

example

W4  0 = WAL(O,.)

W4  = = WAL(2,.)

A computer algorithm for the FWT is included in appendix 1.



Section 3 ]esign of a Spectral Expari nl,

3.1 Distribution of the Spectrum Estimator

We assume that the output from a simulation of a

stochastic system is composed of a deterministic signal tern s

and an error term c.

We will show that the spectrum estimator has a x2 distribution

under the assumption that the additive error term has the

distribution of discrete white noise as defined in Jenkins and

Watts. This means that it is normally distributed with mean

2zero, variance a and cov(i,cj) = 0 for i y J. Using the

terminology defined in section 2.5 we obtain

Y y - W ( s c ) C W s + - W C.

The random component associated with this is

Y. WN

Since the only variability in Y (i) is due to ri, clearly the

variance of Y (i) is o and Cov(Y (i),Y (j)) - 0 for i x j.

Since Y,(i) is a linear function of a normal random

variable, it is distributed normally. Thus

2 2":Y Ci) Y C (k)

22

.. Var(YM i) Cyz

has a x distribution with v, the degrees of freedom, equal to

one. Since the covariance of the Y 's is zero the Y (i)'s are

independent.

22
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The sum of two independent X 2 random variables has a x2

distribution, so

2 y (i) + 1 2 N
0 - (i) 2 - j - 2,2,...,N -1

and

2 N2 - 1 , "

The variance of a X 2 distribution with v degrees of

freedom is 2v, so

Par[ i) 4 1 1,2, ... PN_J [2at o2N| 2 i 0,-

4 = 1,2,..., -I
Var[ Pi) 4 N

2 ar. O 0,

and the variance of P(i) is a constant, not dependent on N.

This means that like the Fourier spectral estimator, the Walsh

estimator is not consistent.

If we have two spectrum estimates Pl(i) and P2 (i) with

the same number of observations, obtained from independent

runs, then

P(i) / P(i) [F = N
2,2 2

P2 (i) / P2(i) F,1 0,

and under the hyporeport that Pl(i) - P2 (i)

AN
P1 (i) F 2 ,2 -

A N
P 2(i) F1  i 0,2 ~,1 ir -

|4 4 . . 4 .. - 4 ... 4 4 .

|,'~

.4- - - 4 4 - 4 -. m-,. 4','.... .4*'. . .- -- ~
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This enables us to perform a statistical test of whether

two independent spectrum estimates are equal. Hence we can

i:-.' ~test whether an observed spike in the spectrum is due to a

factor effect or is due to error.

:-.- The next issue is how to increase the degrees of freedom

for the estimator. Consider a run in which all of the

sequencies assigned are less than or equal to k. Let

K - 2 Flog kj, where the log is base 2. Then all crossterns

will also be of order less than K, since the S operator works

in a bitwise manner. We therefore can restrict the analysis to

batches of K points. If we now let the simulation run for r

batches of length K we will have m independent estimates of

each of the K points under the assumption 'hat the error is an

additive discrete white noise term, since we are performing

linear transformations on independent observations. We can

now construct K new estimators from the sum of these m

estimates. The new estimates will be distributed as k2 random

variables with v = 2m except at the endpoints, since they are

constructed as a sum of m )2 variables with v = 2. The

endpoint estimators are a sum of m k2 distributions with

= 1, and hence will have v = m.

3.2 Sequency Selection

The basic problem is to find a set of sequencies for n

factors such that all of the original terms and the crossterms

have a unique sequency. A straightforward solution is to

PP........................- .
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assign the factors sequencies which are powers of two, which

actually assigns one bit to each factor. This will always

yield a unique met of cross terms, and would be ideal if we

were interested in all possible interactions. For example,

for a three factor model with factor i assigned sequency 21-1

we might observe

sequency - term

*. 1 xI

2 x 2

5 xlx3
6 X2 X3

7 x1x2x3

If we are interested only in two-term interactions this

is inefficient. For a first order model there are n original

terms and n choose 2 crossterms, or a total of (n2 + n)/2

*seuencies. We want to minimize the required number of

observations, and the FWT needs 2 k+ observations to detect a

sequency p in the range 2 k -  p < 2k . The number is 2k+l

rather than 2k because two Walsh functions are used for each

sequency estimate. We can obtain substantial savings even for

.2 relatively small n if we can find (n + n)/2 terms rather than

2 n terms. For example, if we have 10 factors we will generate
q'.

55 sequencies. If we select the original 10 in such a way

. that all 55 sequencies are less than 64, then we need only 128

observations. This is much more efficient than taking

211(-2048) observations to identify the same model.

. . . , ., -. - -. . . - . . - . ..-. -. -. - .. -. .. -. -. '." .. - - . . , , . . . ., . . . . , - . .
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Recall from section 2.6 that in order to detect a square

term we need two Walsh sequencies. If the square term is

present we will observe the crositerm of the two sequencies in

the output. We can solve the selection problem as if we had a

model with twice as many factors, and assign two unique

sequencies per factor. Alternatively we can choose the

sequencies as if there were one extra factor and make one

sequency common to all factors being tested for a square

term. Each of the two proposals has merit. The first one

allows a pairing of high and low sequencies for every factor

so that the model can be tested for system gain. The second

has the desirable property of reducing the size of the problem

we must solve to assign sequencies. The user must decide

which of these considerations is more important for his

specific application.

In order to solve the proposed problem we have written a

computer program called SEQ which enumerates sets of n

sequencies, generates the n choose 2 crossterms, sorts, and

checks for uniqueness of all elements. It prints out the

original n sequencies if they constitute a solution. The code

can be found in appendix 1.

If we did this by explicit enumeration of all

configurations the problem would rapidly become too large to

solve. To find 3 input sequencies, for example, we have 6

terms. We want these to fall in the range 1 to 7. We can

without loss of generality order them so that the first is

smallest and the third is largest. Then to have uniqueness the

IN.

.. .*
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first can only range from I to 5, the second from 2 to 6, and

the third from 3 to 7. If we call the number of parameters n

and the highest sequency of interest is a, in our example

n - 3 and m - 7. Then the number of configurations possible

is a choose n. For our example this is 35. For n - 10 we

need at least (n2 + n)/2 - 55 sequencies. We might as well

consider all sequencies up to the next power of two, i.e.

sequencies 0 through 63, since they will all yield the same

batch size. Then there are 63 choose 10 configurations, or

11more than 10 possibilities to consider. While there may be

several solutions, it could take a long time to find any of

them.

We can drastically reduce the amount of work required by

noting that for the set {XlDX2 ,....Xn) to be a solution the

subset {XlX 2 ,....Xn-l) must also be a solution. Hence if we

can find a solution to the problem at level k, we can add one

additional element and range through the possible values until

we have a solution at level k+l. If we fail to find any

solutions we return to level k and search for a new solution

there. By proceeding iteratively in this fashion we can build

the solutions to fairly large problems quite easily. The

program presented in appendix 1 can handle the case n = 16 in

*" under three minutes on an IBM personal computer. Some

solutions for various values of n ar1 presented here.

. . . . . . . . . . ..°
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n * 4 (,2,4,8)
' in - 5 (1,2,4,8,25)

n - 6 (1,2,4,8,15,16)

n- 16 (1,2,4,8,15,16,32,
51,64,85,106,128,
150,171,219,237)

A separate program called XTERM is included for

predicting all the crossterms from a given set of input

sequencies. Sample output from that program is shown here for

the case n -4.

enter the number of sequencies: 4
enter the sequencies:

1 2 4 8
1 xor 2: 3
i xor 4: 5
i xor 8: 9
2 xor 4: 6
2 xor 8: 10
4 xor 8: 12

3.3 Design of an ExDeriment

We will now describe a general methodology for designing

a Walsh spectral experiment for identification purposes.

The experimenter must first establish the number of

factors to be identified, and the order of the model to be

fit. If a model of greater than order 2 is desired we

recommend using sequencies which are powers of two, as

described in sectior 3.2. Otherwise the experimenter can use

the programs included in appendix 1.
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Next the experimenter should decide whether he needs two

sequencies per factor or can utilize a common term approach.

Two sequencies per factor rapidly increases the required

number of sequencies, and hence increases the number of

observations. For a minimum number of observations the common

term approach is preferable, but it has two disadvantages.

The first is that it may be more susceptible to system gain

behavior, since not every factor can be assigned both a high

and a low sequency. The second disadvantage is that it is not

easy to discern the difference between crossterms and square

terms in the model. For example, consider the following two

factors

x1 -a, [WAL(p,t) + WAL(q,t)]

x2  a2 [WAL(p,t) + WAL(r,t))

where a and a2 are the amplitudes of x1 and x2 respectively.

Then

2~ 2 WAL(pep,t) + WAL(qeqjlt) 4 2 WAL(peq,t)]

2 a 2
- 2 a1 [WAL(0,t) + WAL(peq,t)]

xx 2 = a a2 [WAL(p,t) + WAL(q,t)][WAL(p,t) + WAL(r,t)]

=aa 2 WAL(pep,t) + WAL(pr,t) + WAL(peq,t) + WAL(qr,t)]

-a a 2[WAL(0,t ) + WAL(por,t) + WAL(peq,t) + WAL(qer,t)]

2

Both the x and x1x2 terms share WAL(peq,t) as a common

* identifying sequency. In the absence of terms WAL(por) and

WAL(qlr) we would conclude that the spike in the spectrum was

.. *
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due to an x effect, but if the other terms are present we

cannot exclude the possibility that there is an x12 effect as

well as an xIx 2 effect. Note, however, that all three spikes

identifying an x Ix2 term should have the same height. If the

height at psq is greater than the other two heights, it is

probably due to the addition of an x12 term, although it might

be due to gain.

After deciding on the number of sequencies which will be

needed, the experimenter should select a set such that

crossterms are uniquely identifiable. The program SEQ in

appendix I can be used for this purpose.

The user should then run the experiment by varying each

factor according to the even numbered Walsh function which

corresponds to its assigned sequency. The odd sequence number

cannot be used because it does not preserve the S operator

under which the sequencies were selected, while the even

sequence numbers do. For example, if parameters x1 and x2 are

assigned sequencies 4 and 8, respectively, then we have the

following.

Seq(4) <=> WAL(7,t) , WAL(8,t)

Seq(8) <=> WAL(15,t) ,WAL(16,t)

If the even terms are used

WAL(8,t) WAL(16,t) - WAL(8016,t)

- WAL(24,t)

-> seg(12)

- seq(8e4).

-

7.1
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If the odd terms are used

WAL(7,t) WAL(15,t) -WAL(715,t)

- WAL(8,t)

-> seq(4)

- seq(8e4).

Thus we can only use the sequency based experimental design if

we convert to even numbered Walsh functions.

Finally, the output from the experiment should be

evaluated using a program such as SPECTRUM in appendix 1. The

spectrum obtained from that program can be analyzed for

sequency components corresponding to the factor inputs.

'+.,



Section 4 Analysis and Conclusions

4.1 Verification of WAIg A nalysis

Before proceeding further we wanted to verify the ability

of Walsh analysis to extract the correct signal in the

presence of noise. To this end we constructed a file of

random numbers to be used as a signal with additive noise. A

second file consisted of the fractional parts of the numbers

from the first file, and was considered as the noise. A third

file was constructed from the integer portion of the first

file, and considered to be a noiseless signal. The three

files are presented here.

Signal

4.1 3.9 4.1 3.9 3.8 4.7 5.2 6.4
4.1 3.9 4.1 3.9 3.8 4.7 5.2 6.4

Noise

0.1 0.9 0.1 0.9 0.8 0.7 0.2 0.4
0.1 0.9 0.1 0.9 0.8 0.7 0.2 0.4

Noiseless

4.0 3.0 4.0 3.0 3.0 4.0 5.0 6.0
4.0 3.0 4.0 3.0 3.0 4.0 5.0 6.0

All three files were subjected to spectral analysis using

the program SPECTRUM in appendix 1. Each file was plotted

individually, and the signal and noise files were used to form

the signal to noise ratio. The spectral plots are presented

as figures 5 through 8. The signal plot in figure 5 has a

high sequency component which is not present in the noiseless

32
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plot of figure 7. This noise component Is successfully

eliminated by taking the signal to noise ratio in figure 8.

That plot produces spikes in the same location as those in the

noiseless spectrum, indicating that we have identified the

correct sequency components of the true signal in the presence

of noise.

The noise component in this case does not meet the

assumption of being normally distributed with mean zero. This

indicates that the discriminating ability of Walsh spectra is

not necessarily dependent on the distribution of the error

terms. That distribution is important only in being able to

construct a statistical test for identifying signficant

terms. If the assumptions of section 3.1 hold, the values to

the left of the signal to noise ratio plot are F values, and

can be used directly after computing the appropriate degrees

of freedom.

[~~.'.T .. . . .- .-. ... ... ,.-. . .- .... .-...- .- : .. -, . -.. ,< .. ',g : <".' -.. L- .



34

enter the name of the signal file:
signal

enter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:
1 16

2.0362650E+01
O.OOOOOOOE+OO
4.1281260E-01
O.OOOOOOOE+OO -
1.5156250E-01
O.OOOOOOOE+OO 5+
9.9062500E-02
O.OOOOOOOE+O0 +

4.5156280E-02

2 Figure 5. Spectrum of signal run with noise component

enter the name of the signal file:
noise

enter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:
1 16

2. 6265620L-01
O.OOOOOOOE+OO ±
1.2812500E-02
O.OOOOOOOE+OO 1

S.1.4062500E-02
O.OOOOOOOE-OO 5+
3.6562490E-02
O.OOOOOOOE+OO ±
4.5156240E-02

*. Figure 6. Spectrum of noise component

"1'
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enter t-he name of the signal file:
noiseles

enter the name of the noise file or the word "nul":
nul

enter the number of batches and batch size of the files:
1 16

1.6000000E+Ol
O.OO0OOOE+O0 +
5.OOOOOOOE-Ol
O.OOOOOOOE+OO 1
2.500OOOE-Ol
O.OOOOOOOE+OO 5+
2.50000O0E-Ol +*******
O.OOOOOOOE+OO +
O.OOOOOOOE+OO +

Figure 7. Spectrum of signal without noise component

enter the name of the signal file:
signal

enter the name of the noise file or the word "nul":
noise

enter the number of batches and batch size of the files:
1 16

7.7525870E+01
1.O0OOOOOE+OO
3.2219520E+01
I.OOOOOOOE+OO
1.0777780E+01
1.OOOOOOOE+O0 5+*******
2.7094020E+00
l.OOOOOOOE+OO
1.OOOOOOE+OO

Figure 8. Spectrum of signal/noise ratio

#*.
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-~ 4.2 APolynomial Model

We next tested a model with 4 factors. The model is as

follows:

yt x2,t It Xt 3 t + .001 4 ,t +error

where x I through x 4 are factors

error~ t .8 error~ t1 + .6 z

z - 0,)

The spectral plot included as figure 9 is based on 3 batches

of 32 observations. Sequencies were assigned as follows,

using the common term scheme.

x1  seq(l5) + seq(8)

x: seq(15) + seq(4)
23  e(5)+sq2

x 3: seq(15) + seq(l)

we would predict the following sequencies to be observed.

X 1 :seq(8),oeq(15)

x :seq( 0) ,seq (7)

x : seq(4),seq(15)

x 2 x 3 : seq(0),seq(6),seq(ll),seg(13)

x : seq(l),seq(15)

The derivations of the linear terms should be evident. we

will derive the x 2x3 crossterm as an example.
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x 2 X3 -[seq(15) + seq(4)) sq(15) + seq(2))

[Deq(15) 24(Seq(l5) seq(2)) + (ssq(l5) Beq(4))
+ (seq(4) seq(2)J

- seq(15S15) + seq(15S2) + seq(1504) + seq(402)

- seql(O) + seq(13) + seq(ll) + seq(6)

Spikes were observed at all predicted locations, and as

expected the spike for x 4 was negligable. The spike for the

x /3 term was small but noticable, and would probably be

accepted as significant if more observations were taken

(F .05 4.28).

16,
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enter the name of the signal file:
sig.run

enter the name of the noise file or the word "nul':
nse.run

enter the number of batches and batch size of the files:
3 32

4 .4337260E+01
*, 9.9835490E-01

9.9999980E-01
9.9999940E-01
1.5021450E+00
1.OOOOOOOE+OO 5******
1. 1210890E+Ol
2. 1937100E+02
4.2658360E+01
1.OOOOOOOE+OO
1.OOOOOOE+OO lOj******
4.9413060E+01
9.9999920E-01
1.0608800E+01
9.9999960E-01
1.4179650E+02 **************************************
9.9999980E-01

Figure 9. Spectrum of signal/noise ratio for polynomial model

|- *
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Section 5 Future Research

We present here several topics which are interesting

extensions of the current work.

5.1 Generalized Walsh functions

* While Walsh and traditional spectral analysis can be

applied to any time series, it is preferable to tailor the

* -!analysis to the type of system being analyzed. One area for

future research is to investigate the use of generalized Walsh

functions for analyzing p-valued parameters. Elementary Walsh

functions are binary, and can be used to evaluate binary

parameters. Generalized Walsh functions are series which have

the orthogonality and completeness properties while assuming p

discrete values, where p > 3. Using these functions as the

basis for spectral analysis, it would be theoretically

-.. possible to evaluate systems with multi-valued discrete

parameters by spectral methods.

5.2 Parameter Estimation

Once the significant factors have been identified a

logical next step is to attempt parameter estimation for our

model of the system. This problem will potentially be

complicated by non-linearities in the system. After some

preliminary readings we would recommend an iterative least

squares approach.

39
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5.3 Minimal 1/0 SvstPflEZmatio

One extension of parameter estimation would be to attempt

to reduce the matrix of coefficients to find a minimal

representation for the I/O behavior of the system. A

representation of this sort would have many possible

applications. It could be used for stability/sensitivity

analysis of the system via analytic methods. It could also be

used as an external control system for variance reduction of

the computer simulation. It might be fruitful to investigate

whether there is a relationship between minimal I/0 systems

and minimal representations of the simulation using event

graphs.

5.4 Parameter Optimization

Optimization using computer simulation is generally

regarded as a poor idea. It quickly becomes an expensive

proposition if one employs the traditional approach of using

each run as a single observation. However, using spectral

4-, methods it should be possible to use simulation for

optimization at a substantially reduced cost. One possible

approach would be to try to converge iteratively within a

' * single run. Another approach would be to try to solve the

problem analytically after estimating the system.

5.5 Aid to Variance Reduction

We have already mentioned the possible use of control

variate variance reduction if we have estimated the I/O model

Ar.
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of the system. However, it is still possible to improve

variance reduction without estimating a model by using term

sensitivity to indicate which variance reduction technique is

appropriate. For example, antithetic variates should only be

used if the response surface is monotonic, so the presence of

non-linear polynomial terms would contraindicate the use of

this method.

5.6 Multiple-Input/Multiple-Output Models

Thus far all work done by Schruben, Cogliano, and Sanchez

has focused on single output models. Work needs to be done so

that the procedure can be applied to more general simulation

models.

5.7 Statistical Design of Experiments

It is worth noting that the charts found in many

experimental design texts for setting factor levels in a 2k

factorial experimental design are matrices of Walsh

functions. One can conjecture that a spectral approach to

experimental design has been overlooked prior to now because

most statisticians are familiar only with the traditional

Fourier spectrum. It may be possible to gain additional

insights into design problems by using discrete spectra. For

instance, generalized Walsh functions may be useful for

kdesigning and analyzing p factorial experiments.
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Appendix 1

All programs were implemented in the Pascal language.

Pascal was chosen for its readability and transportability.

Standard features are used throughout with the exception of

the program for enumerating sequencies. That program makes

use of the IBM and Turbo Pascal compilers ability to do XOR
operations on integers. Several programs were developed on

the Purdue UNIX system and then implemented on an IBM

personal computer.

The first program is a procedure which does a Fast Walsh

Transform using the signal flow diagram in figure 3.3 of

Beauchamp.

The second program generates permutations of sequencies

and cross-terms for a given number of parameters. After

generation the sequencies are sorted using a quicksort

algorithm. They are checked for redundant values. If there

are no redundancies the input sequencies are printed.

The third program will take a list of sequencies as

input, and generate all the crossterms as output. This

procedure is described in section 3.2.

The fourth program is a general procedure for doing

Walsh analysis on an input data set. It prompts the user for

the location of the data, number of batches, and size of each

batch. It then does the Walsh analysis and prints the output

as a barplot. If two input files are specified it produces a

signal to noise ratio barplot using the first file as the

numerator and the second as the denominator. Barplots are

produced on a log scale so that smaller spikes will not be

43
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excluded from visibility. The raw value is printed to the

left of the plot, and in the case of a signal to noise plot

can be regarded as an F ratio if the assumptions of section

3.1 are met.

. . .. ".. 
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procedure walsh(var v: voctor;startlgth v: integer);

procedure to perform fast walsh transform on a vector of
length n. Note that n must be a power of 2. Also of
interest is that by the symmetry of the FWT this algorithr,
is Its own inverse, and can be used to generate walsh
functions.
****a**************************************** ********** )

var temp:vector;

half Igth, i, Jk: integer;

begin;
halfIgth :- Igth-v shr 1;
m :- start;
for i :- start to (start + half Igth - 1) do

begin;
k :- i + half Igth;
temp[i] :- v[J + V J+l];
temp[k] :- v[j] - v j+l);
if ((i - start) mod 2) - 1 then temp[k] :- -temp[k];
j :- j + 2;

end;
for i :- start to (start + Igth-v - 1) do

v[i] :- temp[i);
if (half_lgth > 1) then

begin;
walsh(v,start,half_lgth);
walsh(v,start+halfIgth,halflgth);

end;
end; {walsh)

.1..

S..°. •
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program seq(input,output):

Program for generating sequencles whose crossterms
are unique. Generates permutations, sorts, and
compares adjacent elements for equality.

type vector array[..210] of integer;

var v,p: vector;
i,n_param,length,uplia: integer;

procedure permute(var v: vector; n: integer);
(generate the n choose 2 interaction terms for n parameters)
var i,jindex: integer;

begin;
index :m n;

for i :- I to (n - 1) do
begin;

for j :- (i + 1) to n do
begin;

index :- index + 1;
v[index] :- v~i] xor v[j];

end;
end;

end; (permute)

procedure sort(var v: vector; lower,upper: integer);

(sort of a vector v of length n using recursive quicksort}

var pivot: integer;

procedure partition(var v:vector;lower,upper: integer;
var pivot:integer);

procedure swap(var v:vector;j,k: integer);
(swaps the contents of two vector locations}

var temp: integer;

begin;
temp :-[J];
v[J] :] v[k];
v[k] :- temp;

end; (swap)(
:.:.:
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begin,

pivot :w lower;

repeat

repeat
lower :- lower * 1;

until ((vtlower) > v~pivot)) or (lower >- upper));

while ((lower < upper) and (v[pivotJ < v~upper]))
do upper :- upper - 1;

if (lower < upper) then swap(v,lower,upper);

until (lower >- upper);

if v~lower) <v[pivot) then
begin;

swap (v1 lower, pivot) ;
pivot :=lower;

end
else

begin;
swap (v1 lower-l,pivot);
pivot :- lower -1;

* end;

end; (partition)

begin; (quicksort)
partition (v, lower,upper,pivot);
if (pivot -lower) < (upper -pivot) then

begin;
if ((pivot - lower) >= 2) then sort(v,lower,pivot-

if ((upper -pivot) >= 2) then
sort(v,pivot+l,upper);

end
else

begin;
if ((upper - pivot) >= 2) then

sort (v,pivot+l,upper);
* if ((pivot -lower) >= 2) then sort(v,lower,pivot-

end;

end; (sort)(
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function accept(var v: voctori n,length: integer): booleiar;
(accept or reject a set of parameter seguencies as having
unique *Its)

var i: integer;
result: boolean;

* begin;
permnute(v,n);
sort (v1 , length);
result :- true;

-~~~ i - 1

repeat
if v~i] - v[i+l) then

result :-false;
i -i + 1

until (result -false) or (i >- length);
accept :- result;
end; (accept I

procedure add-lvi(var v~p: vector;
current lvl,nparan,totlgth: integer);
{given unique elts at level n, add elts at level n+1)
var i,j,length: integer;

begin;
length :=(sqr(current-lvi) + current-lvi) div 2;

for i :=(p~current -lvl-l)+l) to (tot lgth-(nparam-
current-lvi)) do

begin;
for j :- 1 to (current -lvi - 1) do v[J) : p~j);
vtcurrentll := iv1
if accept(v,current-lvl,lengjth) then
begin;

p[current lvi) :- i;
if current -lvi < nparam then

add lvi (v,p,current ivi+1,nparam,tot_igth)
else

begin;
for j := 1 to current lvi do write(p[j):4);
writeln;

end; (write)
end;(accept block)

* end;(ioop)
end; (add lvi) (
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* . begin,
write( enter *sequencies needed:')
readln(njparan);

* length :-(sqr(n~param) + nyaran) div 2;
uplim : 1
while uplim < length do uplimi: uplim *2;

* for i :- I to (uplim - (n~param -))do

begin;

add-lvl(v,p,2,nyaran,uplim);
* end;

end. (SEQ)
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program xterm(input,output) i

Program to calculate the croasterm sequency locations

type vector - arrayfl..20) of integer;

var v: vector;
i,n: integer;
result: text;
fname: string[14J;

procedure permute (var v: vector; n: integer);
(generate the n choose 2 interaction terms for n parameters)
var ij,index: integer;

begin;
for i :- I to (n - 1) do

for j :- (i + 1) to n do
writeln(result,v~i]:3,' xor ',v[j):3,':', v[i] xor

end; (permute)

begin;
writein;
write('enter the output filename:');

assign(result, fname);
rewrite (result);
writeln(result);
write(result, 'enter the number of sequencies:');
writein;
write('enter the number of sequencies:');
readln(n);
writeln(result,n);
writeln('enter the sequencies:');
writeln(result, 'enter the sequencies:');
for 1 : 1 to n do read(Trm,v~i));
for 1 : 1 to n do write(result,' ',v[i));
writeln(result);
permute (v, n);
close (result) ;

end.
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program spectrum(input,output)l

This program reads in the simulation output from a signal
run
and a noise run, or from just a signal run. It prompts the
user for which type of input he has, the number of batches,
and size of each batch. It then calculates the sequency
spectrum if there is only one input, or calculates the
signal
to noise ratio if there are two. Plots are on a log scale,
and data values are printed to the left of the plot. Output
is written to a file of the users choosing.** ** ************ *** ************* ** ********* ***** ******* ** ****)

const size - 1024;
halfsize - 512;

type runtype - (signal,noise);
vector - array[l..size) of real;
sequency - array[O..halfsize) of real;

var data: array[runtype] of vector;
run,uplim: runtype;
seq: array[runtype) of sequency;
plot: text;
infile: arrayfruntype) of text;
signal_file,noise file,plot_file: string[14];
bsize,n_batches,nseq,i,j: integer;(

|- ,

. .., ."
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procedure initialize:
begin
vrits('enter the name of the signal tile:')l
readln(signal file):
amsign(infile[signalj,signal tile):
reset(infiletsignal)):
writein;
write (
'enter the name of the noise file or the word "nul"':');

V9. readln(noise file);
if (noise file - 'null)

then
uplim :- signal

else
begin

assign(infile[noise) ,noise_file);
reset Cinf ile [noise)) ;
uplim :- noise;

end;
writeln;
write(
'enter the number of batches and batch size of the

files:');
* readln(nbatches,b_size);

writein;
n seq b- bsize shr 1;
fo6r i :- to n seq do

for run := ignal to uplim do
seq[run)(iJ :- 0.0;

write('enter the name of the output file:');
readln(plot file);
assigjn(plot, plot file) ;
rewrite (plot);
writein;
write(plot,'enter the name of the signal file:');
writeln(plot,sigjnal_file);
writeln(plot);
write (plot,
'enter the name of the noise file or the word "null":');

writeln(plot,noise_file);
writein (plot);
write (plot,
'enter the number of batches and batch size of the

files:');
* writeln(plot,n_batches,' 'b_size);

writein (plot);
writeln (plot);
end; (initialize) 4



53
, .€

procedure logplot(var v: seguency; l9gth: integer);
(A procedure to produce a log scale barplot from vector v.
The plot is scaled by the largest difference in v.)

var i,j: integerl
max,min,range: real:

begin
max :, 0.0;
min :1 E37;
for i :- 0 to Igth do
begin

if v[i] > max then max :- vti);
if (v[i] < min) and (vji] > 0.0) then rai : v[i);

end;
max :- in(max);
min :- ln(min/2.8);
if min >- max then mi :n 0;
range :- max - min;

for i :- 0 to lgth do
begin (loop)

write(plot,v[i]);
if (i mod 5) - 0

then
write(ploti:5,1+±)

else
write(plot,' + 1)

if v[i] > 0.0 then
for j :- 1 to trunc(40*((ln(v[i])-min)/range)) do

write(plot, '*');
writeln (plot);

end; (loop)
end; {logplot)

procedure crunch(var v: vector; var seq: sequency;
lqth,s_lgth: integer);

(procedure to calculate spectrum estimator for vector v,
result placed in vector seq.)

var i: integer;

begin
seq[O] := seq[O] + sqr(v[l]/lgth);
seq[s_lgth] := seq[slgth] + sqr(v[lgth]/lgth);

for i :- 1 to slgth-i do
begin

seq[i] :- seq[i] + sqr(v[2*i)/lqth) +
sqr(v[ (2*i)+l]/lgth);

end;
end; (crunch) (
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(61 walsh.pas)

begin
initialize;
for j :- 1 to n batches do

for run :- signal to uplim do
begin

for i :- 1 to b -size do read(infil.erunj,datatrun)Ei));
walsh (datatrun) ,1,b size);
crunch(data~run],seq[run),bsize,n~oeg);

end;
if uplim -noise then

for 1 : 0 to n seq do
if (seqlnoise)(i) > 0.0) then

seq~signalfli) :- seg~signal)[i) / seq~noise)[i)
else if((seq[noise)(i) - 0.0) and (seq~signal)[i) 0.0))

then
seqfsignal)[i) :- 1.0;

logplot(seq~signal) ,n_seq);
close (plot);
end.



Appendix 2

Since there is no analytical method for evaluating the

impact of a lag upon the Walsh spectrut, we resorted to

*.- empirical methods. It was hoped that we would observe a

clear spike at the original sequency, and at worst a sm1l

amount of noise elsewhere. What we actually observed was

that while the original sequency usually has the largest

spike, at times it does not have any spike at all. We

present here 18 spectral plots of different sequencies with

different lags. All plots were constructed from 64

observations. The filename for input is descriptive of the

original sequency and lag. For example, LAG602 contains

Walsh sequence number 60 lagged 2 periods. Recall that:

sequency - integer[ (sequence # + 1) / 2]

Notice that sequence numbers 63, 31, and 15 are

completely periodic with periods 1, 2 and 4, respectively. We

consequently need not lag them more than their period lengths

to have completely identified their behavior.

We include the program TESTLAG, which was used to

generate the lagged Walsh functions. The output was plotted

using SPECTRUM.
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program lageffect(input,output),

Generate WQalsh functions of a specified log

type vector -array[O..1023J of real;

var v : vector;
seq,size,lag,i : integer;
outfile : text:
faime : stringfl4J;

(Si walsh.pas)

begin; (lageffect)
write('enter size, sequence *,and lag:');
readln(trin,size,seq,lag);
write('enter the output filename:');
readin (trm1 fname);
assign(outfile, fnaine);
rewrite(outfils);
for 1 : 0 to (size - 1) do v~i) : 0;
[seg) : 1;

walsh(v,0,size);
for i :-O0to (size-i1) do
writeln(outfile,v( (i-lag) mod size):3);

close (outt ile):
end. (lageffect)
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enter the name of the signal file:

enter the name of the noise file or the word "null':
nul1

enter the number of batches and batch size of the files:
1 64

0.OOOOOOOE+00 0+f
7.8125O0E-03
0.0000000E+00
6. 6406250E-01
0.0000000E+00
3. 9062500E-02
0.0000000E+00
7.8125000E-03
0.0000000E+00
7.8125000E-03
0.0000000E+00 10+
3.9062500E-02
0.0000000E+00 ±
3 .9062500E-02
0.0000000E+O0
7.8125000E-03 15±*******
0.OOOOOOOE+00 +
7.8125000E-03 +***I .0000000E+00 +
3. 9062500E-02
O.0000000E+00 20+
3.9062500E-02
O.0000000E+00 1
7.8125000E-03
0.OOOOOOOE+00 -
7.8125000E-03 25±*******
O.0000000E-00 +
3.9062500E-02
O.OOOOOOOE+00 1
3. 9062500E-02
O.OOOOOOOE+00 30±
7.8125000E-03 +***
0.OOOOOOOE+00 ±



ente thename of the signal file:

.nter the name of the noiee tile or the word "null':
* nul

enter the number of batches and batch size of the files:
1 64

0.OOOOOOOE+00 0+
3.1250000E-02 +*****
0.OOOOOOOE+00 +
4. 0625000E-01
O.OOOOOOOE+0O
1.5625000E-01

* 0.OOOOOOOE+00 1
3. 1250000E-02
0.OOOOOOOE+00
3.1250000E-02
0.OODOOOOE+00 10+f
1.5625000E-01
0.OOOOOOOE+0O

.I~. 1. 5625000E-01
0.OOOOOOOE+0 +
3.1250000E-02 15±***********
0.OOOOOOOE+00 +
O.OOOOOOOE+00 +
O.OOOOOOOE+0O +
0.OOOOOOOE+00 +
O.OOOOOOOE+O0 20±
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+O0 +
0.OOOOOOOE+00 +-
0.OOOOOOOE+0O 25±
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+0O +
0.OOOOOOOE+0O 30±
0.OOOOOOOE+O0 +
O.OOOOOOOE+0O +



enter the name of the signal file:

enter the name of the noise file or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

O.OOOOOOOE+00 0*

2.0265250OE-0.
O.OOOOOOOE+0
3.26156250E-01
O.OOOOOOOE+0
3.501250E-01
O.OOOOOOOE+00 1
7.8312500E-03
0.OOOOOOOE+00 10i
3.8902500OE-02
O.OOOOOOOE+0O 1+

IN 3. 9062500E-02
0.OOOOOOOE+00 +
7.8162500E-03 5****
0.OOOOOOOE400 1
7.8125000E-03 5****
0.OOOOOOOE+00 +
3.8902500OE-02
0.OOOOOOOE+00 20-
3. 9062500E-02
0.OOOOOOOE+00 20
7.9062500E-03
0.OOOOOOOE+00 ±
7.8125000E-03 25****
0.OOOOOOOE+00 +
7.902500OE-02 5****
0.OOOOOOOE+00 ±
3.9062500E-02

- - .OOOOOOOE+00 30±
7.8125000E-03 ****
O.00O000OE+00 +



enter the name of the signal tile:
&:1&954

enter the name of the noise tile or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

O.OOOOOOOE+00 0-
1. 2500000E-01
O.0OOOOOOE+00
1. 2500000E-O1
O.OOOOOOOE-0 ±
6. 2500000E-01
O.OOOOOOOE+00 1
1.2500000E-0.
O.OOOOOOOE+00 ±
0.OOOOOOOE+00 1
O.OOOOOOOE+00 10-f
0.0000000E+00 1
O.OOOOOOOE+00 ±
0.0000000E+00 1
0.0000000E+00 +
O.OOOOOOOE+00 15-f
O.OOOOOOOE+00 +
0.0000000E+00 +-
O.OOOOOOOE+00 +
O.00OOOOOE+00 +
O.000O000E+O0 20±
O.0O0OOOOE+00 +
O.0000000E+00 +
0.OOOOOOOE-00 +
0.0000000E+O0 +-
O.OOOOOOOE+00 25+
O.0000000E+00 +
O.OOOOOOOE+00 +
O.0OO0OOOE+00 +-
O.0000000E+00 +
O.OOOOOOOE+0O 30±
O.OOOOOOOE+00 ±
O.OOOOOOOE+00 ±



enter the name of the signal file:
&:1sg55

enter the name of the noise file or the word "null':
nl

enter the numiber of batches and batch size of the files:
1 64

0.0000000E+00 0+-
1. 9531250E-01 f********** ******

0.0000000E+00 1
1. 0156250E-01
0.0000000E+00 ±
3. 5156250E-01
0.0000000E+00 ±
7. 0312500E-02
0.0000000E+00 ±
7.6125000E-03
0.0000000E+00 lot
3.9062500E-02
0.0000000E+00 ±
3. 9062500E-02
0.0000000E+00 ±
Y .8125000E-03 15±********
0.0000000E+00 +
7.8125000E-03
0.0000000E+00 ±
3. 9062500E-02
0.OOOOOOOE+00 20±
3. 9062500E-02
0.OOOOOOOE+00
7.8125000E-03
0.0000000E+0O
7.8125000E-03 25±********
0.OOOOOOOE+00 ±
3. 9062500E-02
0.OOOOOOOE+00
3. 9062500E-02
0.OOOOOOOE+00 30±
7.8125000E-03 ****
0.OOOOOOOE+00 +
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enter the name of the signal file:
a: 1&9601

enter the name of the noise fil, or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

0.0000000E+00 0+f
- .0.0000000E+00 +f

3.1250000E-02
0.OOOOOOOE400 +
Q.OOOOOOOE+00 +
O.OQOOOOOE+00 5+
3.1250000E-02
0.OOOOOOOE+00
0.OOOOOOOE+O00
O.OOOOOOOE+00 +
3.1250000E-02 10-f*********
0.OOOOOOOE+0O +
0.OOOOOOOE+00 +
O.OOOOOOOE+00 +
3.1250000E-02
O.OOOOOOOE+00 15+
O.OOOOOOOE+00 +
0.OOOOOOOE+00 +
3.1250000E-02
0.OOOOOOOE+00 +F
0.OOOOOOOE+00 20±
0.OOOOOOOE+00 +
3.1250000E-02 +****
0.OOOOOOOE+0O +
O.OOOOOOOE+0O +
0.0000000E+00 25±
3.1250000E-02 +****
O.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 ±
7. 8125000E-01 30********************

* 0.-OOOOOOOE+00 ±
-~~ 0.OOOOOOOE+00 ±
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enter the name of the signal file:
a:l1ag602

enter the name of the noise file or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

0.0000000E+00 0+
0.OOOOOOOE+00

* 0 .0000000E+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +F
0..OOOOOOOE+O0 5+
0.OOOOOOOE+00 +
0.0000000E4-00 t
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+0O 10±
0.OOOOOOOE+O0 +
0.OOOOOOOE+00 +
0.0000000E+s00 +
0.OOOOOOOE+00 +
O.OOOOOOOE+00 15+
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
1.2500000E-01
0.OOOOOOOE+00 +
0.OOOOOOOE+00 20+
0.OOOOOOOE+00 +
1. 2500000E-01
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 25+
1.2500000E-01
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
O.0000000E4-00 +
6. 25000O0E-01 30********************
0.OOOOOOOE+00 ±
0.OOOOOOOE+00
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enter the name of the signal tile:
a:lag603

N enter the name of the noise tile or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

O.OOOOOOOE+OO 0+f
0.OOOOOOOE+00
3. 1250000E-02
0.OOOOOOOE+00 +-
0.OOOOOOOE+0O +
O.OOOOOOOE+00 5+
3.1250000E-02
0.0000000E+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+O0 +
3.1250000E-02 10-j-*********
O.OOOOOOOE+O0 +
O.OOOOOOOE+00 +-
0.OOOOOOOE+O0 +
3.1250000E-02
O.OOOOOOOE+00 15±
0.0000000OE+00 +
0.OOOOOOOE+00 +
3.1250000E-02 *****
0.OOOOOOOE+0O +

O-OOOOOO+00 20+

3.1250000E-02 *****
O.OOOOOOOE+00 +
O.OOOOOOOE+00 ±
0.OOOOOOOE+0O 25±
2. 8125000E-O1
0.OOOOOOOE+00 ±
O.OOOOOOOE+OO
O.OOOOOOOE+0O
5. 3125000E-O1 0********************
0.OOOOOOOE+0 ±
0.OOOOOOOE+00 ±
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V enter the name of the signal file:

enter the name of the noise tile or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

J.OOOO0 0+
0.0000000E+00 +±
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
O.OOOOOOOE+00 5+
0.0000000E+00 +1

* 0.0000000E+00 +-
0.0000000E+00 +
0.OOOOOOOE+00 +
0.0000000E+00 10
0.0000000E+00 1+
0.0000000Es-00 +
O.OOOOOOOE+00 ±
0.OOOOOOOE+00 +
O.OOOOOOOE+0O ±5
0.OOOOOOOE+00 15
0.0000000E+00 ±
0.OOOOOOOE+00 ±
O.0000000E+00 +
0.OOOOOOOE+00 20
O.OOOOOOOE+00 +0
O.OOOOOOOE+00 +
O.OOOOOOOE+00 +
0.OOOOOOOE+00 +

0.OOOOOOOE+00 ±
0.OOOOOOOE+00 25
5. OOOOOOOE-01

0.0000000E+00 ±
0.OOOOOOOE+00 ±

5. OOOOOOOE~~~~~7.-13- -********************
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enter the name of the signal file:
a:1sg605

enter the name of the noise file or the word "null':
* nul

enter the number of batches and batch size of the files:
*1 64

0.OOOOOOOE+00 0+f
0.0000000E+00 +
3.1250000E-02 *****
0.0000000E+00 +
0.OOOOOOOE+00 +
0.0000000E+00 5±
3.1250000E-02 *****
0.OOOOOOOE+00 +
0.0000000E+00 +
0.0000000E+00 +
3.1250000E-02 l0t+**********
0.0000000E+00 -+
0.0000000E+00 +
0.OOOOOOOE+00 +-
3.1250000E-02
0.OOOOOOOE+00 15±
0.0000000E+00 +-
0.0000000E+00 +-
3.1250000E-02
0.OOOOOOOE+00 +
0.OOOOOOOE+00 20±
0.0000000E+00 +-
3.1250000E-02 *****
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+OO 25±
2. 8125000E-0l
0.OOOOOOOE+0O 1
0.0000000E+00 ±
0.0000000E+00 ±
5. 3125000E-01 30********************
0.OOOOOOOE+0O
0.OOOOOOOE+0 ±

.5ri
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enter the name ofthe sinl ie
&:lag6oe

enter the name of the noise tile or the word "null":
* nul

enter the number of batches and batch size of the fileB:
2. 64

0.0000000E+00 0+f
0.0000000E+00 +-
0.0000000E+00 +
O.0OOOO0OE+00 +
0.0000000E+00 +
0.OOOOOOOE+00 5+
O.0000000E+00 +
0.0000000E+00 +

* 0O.OOOOOOOE+00 ±
0.OOOOOOOE+00 +
0.0000000E+00 10+
O.OOOOOOOE+0O +

0.OOOOOOOE+00 +
*0.0000000E+00 +

0.OOOOOOOE+00 5+
0.0000000E+0O 15
O.OOOOOOOE+00 +
0.OOOOOOOE+00 ±F
0.OOOOOOOE+00 +
0.OOOOOOOE+00 2+
O.OOOOOOOE+0O 20
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 25
0.OOOOOOOE+00 25
O.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +

O.OOOOOOOE+OO
0.OOOOOOOE+0O
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enter the name of the signal file:
8: lag6016

enter the name of the noise file or the word "nul":

enter the number of batches and batch size of the files:
1 64

0.0000000E+00 0+
0.OOOOOOOE+00 +-
0.00000001+00 +
0.0000000E+00 +-
0.00000001+00 +
0.0000000E+00 5+f
0.00000001+00 +

O.OOOOOOOE+00 +
O.OOOOOOOE+00 +
0.00000001+00 10
0.00000001+00 ±0
0.00000001+00 +
0.00000001+00 +-
0.00000001+00 +
0.0000000E+00 15-
0.0000000E+00 15
0.00000001+00 +-
0.OOOOOOOE+00 +
O.OOOOOOOE+00 +I
0.00000001+00 +0
0.0000000E+0O 20-
0.OOOOOOOE+00 +
0.00000001+00 +

0.OOOOOOOE+00 +
0.00000001+00 25±
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.00000001+00 +
0.00000001+00 ±

0.00000001+00
0.00000001+00 ±

-IW
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enter the name of the signal file:
a:1&9631

; , ~enter the name of the noise file or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

0.0000000E+00 0+
0.0000000E+00 +
0.0000000E+O0
O.00OO0O0E-00 +
0.0000000E+00 +
0.0000000E+00 5+
O.OOOOOOOE+00 +
0.0000000E+00 +
0.0000000E+00 +I
0.0000000E+00 +
0.0000000E+00 10+
0.OOOOOOOE+00 +
0.0000000E-00 +
O.OOOOOOOE+00 +
0.0000000E+-00 +
O.OOOOOOOE+00 15+
0.0000000E+00 +
0.OOOOOOOE+00 +
0.0000000E+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 20±
0.OOOOOOOE+00 +
O.OOOOOOOE+00 +
0.OOOOOOOE+00 +-
0.0000000E+00 +
0.0000000E+00 25±
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.0000000E+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 30±
0.OOOOOOOE+00 ±

p 1.0000000OE+00



70

enter the name of the signal file:
a:1ag311

enter the name of the noise file or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

0.0000000E+00 0+
* 0O.OOOOOOOE+0O

0.OOOOOOOE+0O 1
0.OOOOOOOE+00 ±
0.OOOOOOOE+00
0.OOOOOOOE+00 5+
0.0000000E+00 +
0.OOOOOOOE+00 +
O.0OOOO0OE+O0 +
0.OOOOOOOE+00 +-
0.OOOOOOOE+00 lot
0.0000000E+O0 +-
0.OOOOOOOE+00 +-
0.0000000E+00 +-

0.OOOOOOOE+00 1+
1. OOOOOOOE+00 15
10000000OE+00 +
0.OOOOOOOE+00 +
O..OOOOOOOE+00 ±
0.OOOOOOOE+00 20
0.OOOOOOOE+0O 2+
0.OOOOOOOE+00 +-
0.OOOOOOOE+00 +
0.0000000E+00 +-
0.OOOOOOOE+00 5+
0.OOOOOOOE+00 25
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +0
0.OOOOOOOE+00 30
O.OOOOOOOE+00 +

4.OOOE0

I %

***% %
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enter the name of the signal file:
&:leg3l2

enter the name of the noise file or the word "null":
fl

enter the numiber of batches and batch size of the files:
1 64

0.OOOOOOOE+00 0+
O.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +-
0.0000000E+00 5+
O.0000000E+00 +
0.0000000E+00 +-
0.0000000E+00 +-
0.0000000E+00 +
O.OOOOOOOE+00 10+
0.OOOOOOOE+00 +-
0.OOOOOOOE+00 +
O.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 15+
1. 0000000E+00
O.OOOOOOOE+00 ±
O.OOOOOOOE+0O
O.OOOOOOOE+00 ±
0.OOOOOOOE+00 20±
0.OOOOOOOE+00 +
O.OOOOOOOE+00 +
0.0000000E+00 +-
0.OOOOOOOE+O0 +
0.OOOOOOOE+00 25±
O.OOOOOOOE+00 +
O.0000000E+00 +
O.OOOOOOOE+00 +
0.OOOOOOOE+00 +
O.OOOOOOOE+00 30±
O.OOOOOOOE+00 ±
0.OOOOOOOE+00 ±
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enter the name of the signal file:
a: lag 151

enter the name of the noise file or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

* - .0000000E*00 0+f

0.0000000E+00 -
0.OOOOOOOE+00 +1

0.OOOOOOOE+0Q +-
0.OOOOOOOE+00 5+
0.OOOOOOOE+00 +
0.OOOOOOOE+00 ±
5. OOOOOOOE-0l
0.OOOOOOOE+00 +
0.OOOOOOOE+00 10+i
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 ±
0.0000000E+00 +
0.OOOOOOOE+00 15±
0.OOOOOOOE+00 +

9-OOOO+0

0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 20

-" O.OOOOOOOE+O0 +0
0.OOOOOOOE+00 +

*O.OOOOOOOE+00 t
5. OOOOOOOE-01
0.OOOOOOOZ+00 25t
O.OOOOOOOE+00 ±
0.OOOOOOOE+00 t
0.OOOOOOOE+00 +
0.OOOOOOOE+00 ±
0.OOOOOOOE+00 30±
0.OOOOOOOE+00 ±

* .OOOOOOOE+00 ±

.JY.



enter the name of the signal file:
a: lagl52

enter the name or the noise file or the word "null':
nul

en~ter the number of batches and batch size of the files:
1 64

0.0000000E+00 0+
0.0000000E+00 +~
0.0000000E+00 +

p .OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.OOOOOOOE+00 5+
0.OOOOOOOE+00 +
0.OOOOOOOE+00 ±
1.0000000OE+00
0.OOOOOOOE+00 ±
0.OOOOOOOE+00 10±
0.OOOOOOOE+00 +
0.OOOOOOOE+00 +
0.0000000E+00 +

0.OOOOOOOE+00 +5
O.OOOOOOOE+0O 15
0.0000000B+00 +
O.OOOOOOOE+00 +

NO.OOOOOOOE+0O +
0.OOOOOOOE+00 +0
0.0000000E+00 ±0
0.OOOOOOOE+00 +
0.OOOOOOOE+O0 +
0.0000000E+00 ±
O.OOOOOOOE+00 +5
0.OOOOOOOE+00 25
O.OOOOOOOE400 +
0.OOOOOOOE+00 ±
0.OOOOOOOE+00 ±
0.OOOOOOOE+00 30
0.OOOOOOOE+00 30
0.OOOOOOOE+00 +

....... ......... 0
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enter the name of the signal file:
a:1agl53

enter the name of the noise file or the word "null':
nul

enter the number of batches and batch size of the files:
1 64

O.OOOOOOOE+00 0±
0.OOOOOOOE+00 +
O.OOOOOOOE+0O +
O.OOOOOOOE+00 +
O.OOOOOOOE+00 +
0.OOOOOOOE+00 5±
O.OOOOOOOE+0O +
O.OOOOOOOE+OO
5. OOOOOOOE-0l
0.OOOOOOOE+00 ±
0.OOOOOOOE+O0 10+

* .0000000E+00 +
0.0000000E+00 ±
0.OOOOOOOE+00 +
0.0000000E+00 +
0.0000000E+00 15±
0.OOOOOOOE+00 +
0.OOOOOOOE+OO +
0.0000000E+00 +

* .0000000E+00 +
O.OOOOOOOE+00 20±
0.0000000E+00 +
0.0000000E+00 +
0.0000000E+00 +
5. 0000000E-01
0.0000000E+0O 25+
0.0000000E+00 +
0.0000000E+00 +
0.OOOOOOOE+00 +-
0.0000000E+00 +
0.0000000E+00 30±
0.0000000E+00 +
0.OOOOOOOE+0O +

*r.* *' ~ - *** ... *.... 4 4-
AL i*_ Z . ~ *
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identify those parameters to which the response of interest

has the greatest sensitivity.

One method of doing this is to try to model the response

as a polynomial function of the model parameters. We are then

interested in those terms in the polynomial which have non-

zero coefficients.

Schruben and Cogliano developed a method whereby such

polynomial models can be identified in fewer computer runs

than previous methods allowed. Their concept was to do

analysis in the frequency domain rather than the time domain.

The virtual independence of frequency estimators in a spectrum

means that many parameters can be tested independently within

a single experiment using spectral methods.

This report attempts to extend the Schruben/Cogliano

methodology to cover a more general class of models which

includes discrete-valued parameters, such as policy decisions

or capacities of queues. We evaluated the use of discrete-

valued functions as a basis for spectral analysis. Several

function sets were considered as possibilities, and Walsh

functions were selected as the best choice.

our preliminary results indicate that Walsh analysis may

present a promising method for identifying significant

parameters. However, the method exhibits undesirable behavior

when time lags are present in the model.
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